Consecutive projections onto convex sets.
نویسندگان
چکیده
In this note we describe and evaluate the performance of a novel approach to information recovery that involves consecutive projection onto convex sets (POCS). The method is applied to a time series of medical image data and the results are compared to images reconstructed using the standard POCS reconstruction method. The consecutive POCS method converges in a desired step-wise manner producing reconstructed images of superior quality compared to the standard scheme and can speed up the reconstruction process. The proposed method is of value for many finite sampling imaging problems including, in particular, fast-scan magnetic resonance imaging applications.
منابع مشابه
Finding the projection of a point onto the intersection of convex sets via projections onto half-spaces
We present a modification of Dykstra’s algorithm which allows us to avoid projections onto general convex sets. Instead, we calculate projections onto either a halfspace or onto the intersection of two halfspaces. Convergence of the algorithm is established and special choices of the halfspaces are proposed. The option to project onto halfspaces instead of general convex sets makes the algorith...
متن کاملOn Differentiability of Metric Projections onto Moving Convex Sets
We consider properties of the metric projections onto moving convex sets in normed linear spaces. Under certain conditions about the norm, directional diierentiability (of higher order) of the metric projections at boundary points is characterized. The characterization is formulated in terms diierentiability of multifunctions and properties of the set-derivatives are shown.
متن کاملProjection Methods: An Annotated Bibliography of Books and Reviews
Projections onto sets are used in a wide variety of methods in optimization theory but not every method that uses projections really belongs to the class of projection methods as we mean it here. Here projection methods are iterative algorithms that use projections onto sets while relying on the general principle that when a family of (usually closed and convex) sets is present then projections...
متن کاملConvex set theoretic image recovery by extrapolated iterations of parallel subgradient projections
Solving a convex set theoretic image recovery problem amounts to finding a point in the intersection of closed and convex sets in a Hilbert space. The projection onto convex sets (POCS) algorithm, in which an initial estimate is sequentially projected onto the individual sets according to a periodic schedule, has been the most prevalent tool to solve such problems. Nonetheless, POCS has several...
متن کاملExistence and Differentiability of Metric Projections in Hilbert Spaces
This paper considers metric projections onto a closed subset S of a Hilbert space. If the set S is convex, then it is well known that the corresponding metric projections always exist, unique and directionally differentiable at boundary points of S. These properties of metric projections are considered for possibly nonconvex sets S. In particular, existence and directional differentiability of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physics in medicine and biology
دوره 47 6 شماره
صفحات -
تاریخ انتشار 2002